William Hahn, Ph.D.

Assistant Professor

  • Boca Raton FL UNITED STATES
  • Department of Mathematical Sciences

William Hahn researches neural networks and deep learning.

Contact

Multimedia

Social

Areas of Expertise

Neural Networks
Deep Learning
Medical Imaging

Education

Florida Atlantic University

Ph.D.

Complex Systems and Brain Sciences

2016

University of North Carolina at Greensboro

M.Sc.

Mathematics and Computer Science

2011

Guilford College

B.S.

Mathematics and Physics

2008

Affiliations

  • VoxelRX : CEO
  • MPCR Labs : Director

Selected Media Appearances

Could robots be psychology's new lab rats?

Science Magazine  

2019-10-07

Sending a mouse through a maze can tell you a lot about how its little brain learns. But what if you could change the size and structure of its brain at will to study what makes different behaviors possible? That’s what Elan Barenholtz and William Hahn are proposing. The cognitive psychologist and computer scientist, both at Florida Atlantic University in Boca Raton, are running versions of classic psychology experiments on robots equipped with artificial intelligence. Their laptop-size robotic rovers can move and sense the environment through a camera. And they’re guided by computers running neural networks–models that bear some resemblance to the human brain...

View More

FAU Robo-Pup Named Astro Described As ‘First Of Its Kind In The World’

CBS Miami  

2019-09-25

“In terms of having the head and the eyes and the ears and the AI [artificial intelligence] brain we’re building, this is the only unit in the world like this one,” says William Hahn. He’s an assistant Mathematical Sciences professor and co-director of FAU’s Machine Perception and Cognitive Robotics Lab...

View More

Engineers Create Smart Robodog With AI Brain

SciTech Daily  

2019-08-15

The human brains behind Astro are a team of neuroscientists, IT experts, artists, biologists, psychologists, high school students and undergraduate and graduate students at FAU. At the helm of this project are Elan Barenholtz, Ph.D., an associate professor in FAU’s Department of Psychology, co-director of FAU’s MPCR laboratory, and a member of FAU’s Brain Institute (I-BRAIN), one of the university’s four research pillars; William Hahn, Ph.D., an assistant professor in FAU’s Department of Mathematical Sciences and co-director of FAU’s MPCR laboratory; and Pedram Nimreezi, director of intelligent software in FAU’s MPCR laboratory, chief technology officer for RedGage and a martial arts expert...

View More

Show All +

Selected Articles

Self-Organizing Map Methodology for Sorting Differential Expression Data of MMP-9 Inhibition

bioRxiv

RS Clair, M Teti, A Knapinska, G Fields, W Hahn, E Barenholtz

2019

An unsupervised machine-learning model, based on a self-organizing map (SOM), was employed to extract suggested target genes from DESeq2 differential expression analysis data. Such methodology was tested on matrixmetalloproteinase 9 (MMP9) inhibitors. The model generated information on several novel gene hits that may be regulated by MMP-9, suggesting the self-organizing map method may serve as a useful analytic tool in degradomics research for further differential expression data analysis. Original data was generated from a previous study, which consisted of quantitative measures in changes of levels of gene expression from 32,000 genes in four different conditions of stimulated T-cells treated with an MMP-9 inhibitor. Since intracellular target of MMP-9 are not yet well characterized, the functional enrichment analysis program, WebGestalt, was used for validation of the SOM identified regulated genes. The proposed data analysis method indicated MMP-99s prominent role in biological regulatory and metabolic processes as major categories of regulation of the predicted genes. Both fields suggest extensive intracellular targets for MMP-9-triggered regulation, which are new interests in MMP-9 research. The methodology presented here is useful for similar knowledge and discovery from quantitative datasets and a proposed extension of DESeq2 or similar data analysis.

View more

Saliency Map Classification Using Capsule-based CNNs

Journal of Vision

M Kleiman, W Hahn, E Barenholtz

2018

View more

Convolutional neural networks for predicting molecular binding affinity to HIV-1 proteins

Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics

P Morris, Y DaSilva, E Clark, WE Hahn, E Barenholtz

2018

Computational techniques for binding-affinity prediction and molecular docking have long been considered in terms of their utility for drug discovery. With the advent of deep learning, new supervised learning techniques have emerged which can utilize the wealth of experimental binding data already available. Here we demonstrate the ability of a fully convolutional neural network to classify molecules from their Simplified Molecular-Input Line-Entry System (SMILES) strings for binding affinity to HIV proteins. The network is evaluated on two tasks to distinguish a set of molecules which are experimentally verified to bind and inhibit HIV-1 Protease and HIV-1 Reverse Transcriptase from a random sample of drug-like molecules. We report 98% and 93% classification accuracy on the respective tasks using a computationally efficient model which outperforms traditional machine learning baselines. Our model is suitable for virtually screening a large set of drug-like molecules for binding to HIV or other protein targets.

View more

Show All +